Search results for "Primary 28A80"

showing 3 items of 3 documents

Dynamics of the scenery flow and geometry of measures

2015

We employ the ergodic theoretic machinery of scenery flows to address classical geometric measure theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its set-theoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a n…

Pure mathematicsgeometryMatemáticasGeneral MathematicsDimension (graph theory)CONICAL DENSITIESDynamical Systems (math.DS)Measure (mathematics)Matemática Pura//purl.org/becyt/ford/1 [https]RECITFIABILITYEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: MathematicsErgodic theoryscenery flowMathematics - Dynamical SystemsDIMENSIONMathematicsmatematiikkamathematicsta111measures//purl.org/becyt/ford/1.1 [https]Hausdorff spacePOROSITYConical surfacePrimary 28A80 Secondary 37A10 28A75 28A33Flow (mathematics)Mathematics - Classical Analysis and ODEsFRACTAL DISTRIBUTIONSDimension theorygeometriaCIENCIAS NATURALES Y EXACTAS
researchProduct

Local conical dimensions for measures

2012

AbstractWe study the decay of μ(B(x,r)∩C)/μ(B(x,r)) asr↓ 0 for different kinds of measures μ on ℝnand various conesCaroundx. As an application, we provide sufficient conditions that imply that the local dimensions can be calculated via cones almost everywhere.

PhysicsMathematics - Classical Analysis and ODEsGeneral MathematicsPrimary 28A80 Secondary 28A75 28A12ta111Mathematical analysisClassical Analysis and ODEs (math.CA)FOS: MathematicsAlmost everywhereConical surface
researchProduct

Weak separation condition, Assouad dimension, and Furstenberg homogeneity

2015

We consider dimensional properties of limit sets of Moran constructions satisfying the finite clustering property. Just to name a few, such limit sets include self-conformal sets satisfying the weak separation condition and certain sub-self-affine sets. In addition to dimension results for the limit set, we manage to express the Assouad dimension of any closed subset of a self-conformal set by means of the Hausdorff dimension. As an interesting consequence of this, we show that a Furstenberg homogeneous self-similar set in the real line satisfies the weak separation condition. We also exhibit a self-similar set which satisfies the open set condition but fails to be Furstenberg homogeneous.

General MathematicsHomogeneity (statistics)ta111Open setPrimary 28A80 Secondary 37C45 28D05 28A50Moran constructioniterated function systemSet (abstract data type)CombinatoricsDimension (vector space)dimensionMathematics - Classical Analysis and ODEsweak separation conditionClassical Analysis and ODEs (math.CA)FOS: MathematicsLimit (mathematics)Limit setCluster analysisReal lineMathematics
researchProduct